Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions.

نویسندگان

  • Jianwei Su
  • Yunxia Zhang
  • Sichao Xu
  • Shuan Wang
  • Hualin Ding
  • Shusheng Pan
  • Guozhong Wang
  • Guanghai Li
  • Huijun Zhao
چکیده

Herein, we demonstrate the design and fabrication of the well-defined triple-shelled Ag@Fe3O4@SiO2@TiO2 nanospheres with burr-shaped hierarchical structures, in which the multiple distinct functional components are integrated wonderfully into a single nanostructure. In comparison with commercial TiO2 (P25), pure TiO2 microspheres, Fe3O4@SiO2@TiO2 and annealed Ag@Fe3O4@SiO2@TiO2 nanocomposites, the as-obtained amorphous triple-shelled Ag@Fe3O4@SiO2@TiO2 hierarchical nanospheres exhibit a markedly enhanced visible light or sunlight photocatalytic activity towards the photodegradation of methylene blue and photoreduction of hexavalent chromium ions in wastewater. The outstanding photocatalytic activities of the plasmonic photocatalyst are mainly due to the enhanced light harvesting, reduced transport paths for both mass and charge transport, reduced recombination probability of photogenerated electrons/holes, near field electromagnetic enhancement and efficient scattering from the plasmonic nanostructure, increased surface-to-volume ratio and active sites in three dimensional (3D) hierarchical porous nanostructures, and improved photo/chemical stability. More importantly, the hierarchical nanostructured Ag@Fe3O4@SiO2@TiO2 photocatalysts could be easily collected and separated by applying an external magnetic field and reused at least five times without any appreciable reduction in photocatalytic efficiency. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, make these multifunctional nanostructures promising candidates to remediate aquatic contaminants and meet the demands of future environmental issues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic semiconductor photocatalysts for the degradation of recalcitrant chemicals from flow back water.

In the present study treatability of persistent organic compounds from the flow back water after hydrauling fracturing was investigated. The combination of TiO2 photocatalyst and magnetic oxide nanoparticles enhance the separation and recoverable property of nanosized TiO2 photocatalyst. Fe3O4/TiO2 and Fe3O4@SiO2/TiO2 nanocomposites were prepared by heteroagglomeration. The photocatalysts' char...

متن کامل

Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system

Herein, a ternary nanocomposite with TiO2 nanoparticles anchored on reduced graphene oxide (rGO)-encapsulated Fe3O4 spheres (Fe3O4@rGO@TiO2) is presented as a high efficient heterogeneous catalyst for photo-Fenton degradation of recalcitrant pollutants under neutral pH. Fe3O4@rGO@TiO2 was synthesized by depositing TiO2 nanoparticles on the surface of the Fe3O4 spheres wrapped by graphene oxide ...

متن کامل

Fabrication of Magnetically Recoverable Nanocomposites by Combination of Fe3O4/ZnO with AgI and Ag2CO3: Substantially Enhanced Photocatalytic Activity under Visible Light

We report highly efficient magnetically recoverable photocatalysts through combination of Fe3O4/ZnO with AgI and Ag2CO3, as narrow band gap semiconductors. The resultant photocatalysts were characterized by XRD, EDX, SEM. TEM, UV–vis DRS, FT-IR, PL, and VSM instruments. Under visible-light illumination, the nanocomposite with 1:6 weight ratio of Fe3O4 to ZnO/AgI/Ag2CO3 exhibited superior activi...

متن کامل

Fabrication Fe3O4/SiO2/TiO2 Nanocomposites and Degradation of Rhodamine B Dyes under UV Light Irradiation

Recycling and reusing of catalyst is an important factor to produce capable and low cast catalysts. Silica coated magnetic nanoparticles (Fe3O4/SiO2) were synthesized via a simple sol-gel method with the aid of sonication. Fe3O4 nanoparticles. After that a layer of TiO2 was constricted by hydrolyze and condensation of Teteranormalbuthyltitanate to produce Fe3O4/SiO2/TiO2 nanocompsite. As-synthe...

متن کامل

Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO2@Ag nanoparticle substrate.

As one of the most toxic heavy metals, hexavalent chromium (Cr(VI)) has long been a concern due to its threats to human health and the environment. In this work, we develop a sensitive surface-enhanced Raman scattering (SERS) sensor for highly specific detection of Cr(VI) using hollow sea urchin-like TiO2@Ag nanoparticles (NPs). The TiO2@Ag NPs are functionalized with glutathione (GSH) and used...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 10  شماره 

صفحات  -

تاریخ انتشار 2014